

Table of Contents

Chapter 1 Introduction and Cell 1
Chapter 2 Epithelium 15
Chapter 3 Connective tissue 29
Chapter 4 Muscle tissue 43
Chapter 5 Cartilage and Bone 61
Chapter 6 Nerve tissue 85
Chapter 7 Peripheral blood 107
Chapter 8 Hematopoesis 113
Chapter 9 Cardiovascular System 127
Chapter 10 Lymphoid system 157
Chapter 11 Skin 181
Chapter 12 Exocrine glands 193
Chapter 13 Endocrine glands 205
Chapter 14 Gastrointestinal Tract 223
Chapter 15 Liver and Gall Bladder 247
Chapter 16 Urinary System 261
Chapter 17 Respiratory System 289
Chapter 18 Female Reproductive System 305
Chapter 19 Male Reproductive System 329
Chapter 20 Organs of Special Sense 343
Index 359

This atlas is a series of photographs ranging from low to high magnifications of the individual tissue specimens. The low magnification images should be used for orientation, while the higher magnification images show details of cells, tissues, and organs. Although every effort has been made to faithfully reproduce the colors of the tissues, a full appreciation of histological structure is best achieved by examining the original specimens with a microscope. This atlas is a preview of what should be observed.

The photomicrographs found in this atlas come from the collection of microscope slide used by medical, dental and undergraduate students of histology at the University of Minnesota. Most of these slides were prepared by Anna-Mary Carpenter M.D., Ph.D. during her tenure as Professor in the Department of Anatomy (University of Minnesota Medical School).

Each tissue specimen, in its entirety, has been digitized with a high resolution 40X or 60X lens to generate virtual microscope slides. The Virtual Microscope Collection includes additional slides which complement and extend the core slide collection. Producing the virtual slide collection and developing the web site for their presentation was done with the very capable assistance of Todd C. Brelje Ph.D.

The drawings that appear in the atlas are the product of Jean E. Magney, who is accomplished both as an histologist and an artist. Her talented interpretation of biological structure and its artistic rendering greatly facilitate the learning and comprehension of histology. These drawings first appeared in "Color Atlas of Histology" Stanley L. Erlandsen and Jean E. Magney, Mosby 1992.

Robert L. Sorenson, Ph.D.

First edition 2004
Second edition 2008
(second printing 2011)

Introduction:

What is histology? Histology is the study of cells, tissues and organs as seen through the microscope. Although this atlas is a guide to biological structure that can be observed through the light microscope, histology also includes cellular detail down to the molecular level that can be observed using an electron microscope. The importance of histology is that it is the structural basis for cell, tissue and organ biology and function (physiology) and disease (pathology).

What is the plan for the study of cells, tissues and organs? Histology is organized into four basic types of tissues.

1. Epithelium
2. Connective tissue including

Cartilage and bone
Blood and blood formation
3. Muscle
4. Nervous tissue

Chapters 2-8 are concerned with the features of the four basic tissues. The remaining chapters focus on features of organs. Organs are typically made up of more than one type of tissue and cells with varying degrees of differentiation.

The light microscope, tissue preparation, limits and challenges.

The bright field light microscope is a two lens compound optical instrument. The two lenses are the objective and the oculars. The oculars have a 10 fold magnification and the objectives range from 10X, 20X, 40X to 100X. Thus the total magnification typically ranges from 100 fold to 1000 fold. In practice this means that while using the 10X objective you have a wide field of view, but with low resolution. While using the 100X objective you have high resolution, but with a very small field of view. To use a metaphor what this means is that when using the low power objective you can see the forest but not the trees and while using the high power objective you can see the leaves on the trees but not the forest. Therefore when examining a specimen it is essential to start with the low power objective to gain perspective and then work up to the highest power magnification as needed to observe the necessary detail.

Examination of tissues requires that they be prepared for viewing with a microscope. This is a multi-step process that includes fixation (preserves the tissue), embedment (stabilizes the tissue for sectioning), sectioning (cuts the specimen into thin slices of about 5 um) then placing the sections on a glass slide so they can be stained for viewing.

A note about resolution and detection. Resolution refers to the ability to discriminate between two adjacent objects. For the light microscope with optimal lenses and sample preparation this approaches 0.2 um, which is the theoretical limit for light microscopes. [The eye can resolve about 250-500 um and the electron microscope can resolve about 1 nm) Detection refers to the ability to detect something and this can be much smaller than the limit of resolution. For fluorescence molecules this can be as little as a few molecules!

There are several challenges in learning histology. The first being that the view observed through a microscope gives you a perspective that you are unlikely to have experienced previously. It is a complex data set - one with a broad range of shapes and sizes, with varying shades of red and blue. This complex image offers very few clues that are intuitive. Also, the tissue specimen is a two dimensional slice of a complex three dimensional
structure. So, once the two dimensional image has been ascertained you still have the challenge of imagining its three dimensional elaboration. The ideal situation is to have the student and teacher viewing the same specimen simultaneously such as in a dual view microscope. Since this is not always possible, this atlas was written as if a teacher was always at your side to help guide you from low power to the highest power necessary to observe the essential features of the tissue specimens. Thus you will notice that images of all of the slides range from a macroscopic view of the microscope slide itself and then progress through higher magnifications as needed.

How to study microscope slides:

1. Know what structures are important to learn. This atlas shows and identifies the structures and how to find them.
2. The next task in learning is to see if you can identify the structures when examining a slide. Always start at the lowest power (this is important for context and orientation). Increase the magnification as needed so that additional features of the specimen can be observed.
3. Take notes on the features that are observed in the slide. This is best done by drawing pictures and writing a description of the specimen. As in any science laboratory, it is essential that observations be recorded. Not only is this good practice but in research and medicine it is also a legal requirement.
4. Each chapter has a section "Observe and note". This lists the features that are essential to learning histology and are noteworthy.

How to take Histology Laboratory Notes:

A. Draw a picture of the object of interest. (A blue and red pencil is sufficient for nearly all drawings)
B. Write notes about its appearance, characteristics and features.

Nearly every cell can be described by taking note of:

1. Size
2. Shape
3. Nuclear size and shape and nuclear/cytoplasmic ratio
4. General Staining properties (H\&E)
a. Basophilia \& eosinophilia
b. Hetero- and euchromatin
5. Special staining properties
a. Verhoeff, Azan, silver etc.
6. Cellular specializations
a. Microvilli, cilia, secretion granules, myofilaments etc.
b. Unusual amounts of mitochondria, RNA etc
7. Cellular constituents such as secretion granule contents (hormones, enzymes)
8. Polarity
9. Extracellular material
a. Extent
b. Appearance
10. Location
a. Example
i. Adjacent to similar cells
ii. Borders a lumen
iii. Surrounded by extensive extracellular matrix
iv. Etc.
11. Organization (cells, tissues and organs)
a. Arrangement of cells of similar and different types
b. Arrangement of cells with respect to extracellular material
12. Compare and contrast with similar/different cells.
13. Heterogeneity among homologous cells:
a. Cell development and differentiation
b. Cell Cycle
c. Active and resting cycles
d. Exposure to a concentration gradient of nutrients
i. Example
14. Skin cells
15. Liver hepatocytes
C. Include questions in the notes.

Carefully formulated questions can often reveal the answer.
D. Drawing (and taking notes) is a way of thinking, seeing and understanding.

Chapter 14 Gastrointestinal Tract

The gastrointestinal tract is a hollow muscular tube that starts at the esophagus and ends with the anus. It is divided into four regions, the esophagus, stomach, small intestine and large intestine. The esophagus is a passage for transporting food to the stomach. The stomach adds gastric juices to begin digestion. It is divided into three histologic regions: cardiac, fundus/body and pyloric. The small intestine is the principle site for digestion and absorption. It transfers chyme from the stomach to the large intestine and is divided into three regions: duodenum, jejunum and ileum. The large intestine has the main function of re-absorbing water from the chyme and adding mucus to facilitate transport of the feces. The parts of the large intestine are the cecum, appendix, colon, rectum and anal canal.

General Plan for Hollow Tubular Organs

The walls of hollow organs have four layers or tunics: mucosa, submucosa, muscularis externa and adventitia or serosa.

Mucosa (mucous membrane): Mucous membranes line internal passages and provide a barrier between the tissues of the body and the external environment. The membranes are constantly wet and lubricated by mucus. The mucosa has three parts: an epithelium, lamina propria and muscularis mucosa. The epithelium varies in different regions depending on its function (i.e. protective, secretory or absorptive). The lamina propria is a connective tissue layer that supports the epithelium and contains small arteries, veins, lymphatics and nerves. Lymphocytes and plasma cells are also frequently seen in this layer. When glands are found in this layer they are referred to as mucosal glands. The muscularis mucosa, when present, consists of two or three layers of smooth muscle. It facilitates localized movement of the mucous membrane, aiding expression of secretions and movement of fluid across the surface of the epithelium.

Submucosa: The submucosa is a layer of fibroelastic connective tissue that supports the mucosa. Found in this layer are blood and lymphatic vessels and nerves. Parasympathetic ganglia found in this layer are called Meissner's submucosal plexus. When glands are found in this region (esophagus and duodenum) they are referred to as sub-mucosal glands.

Muscularis externa: This is a separate layer not to be confused with muscularis mucosa. The muscularis externa consist of two thick layers of smooth muscle - and inner circular layer and an outer longitudinal layer. Between the layers is a
vascular plexus and an autonomic nerve plexus associated with small parasympathetic ganglia of (Auerbach's) myenteric plexus. The muscularis externa maintains tonus in the tube and propels luminal contents by peristalsis.

Adventitia or serosa: This outermost layer is dense irregular connective tissue. When it blends with connective tissue of the surrounding area it is an adventitia. If it has a free surface projecting into the peritoneal cavity it is covered with a single layer of mesothelial cells (epithelial cells derived from mesoderm) and is called a serosa.

Esophagus

The epithelium is stratified squamous and non-keratinized. This is a thick layer of $40-60$ cells measuring 300-500 um. This is supported by a lamina propria. A well developed muscularis mucosa is present (200-300 um) and surrounded by the submucosal region. Submucosal mucous glands are scattered in this region. The muscularis externa consists of an inner circular layer and an outer longitudinal layer. In the upper third of the esophagus the muscularis is skeletal muscle. In the middle third both smooth and skeletal muscle is present and in the lower third only smooth muscle is present. The myenteric plexus of nerves and ganglia (Auerbach's plexus) are found between the inner and outer layers of the muscularis externa. A tunica adventia is present.

Stомасн

An abrupt transition occurs at the cardio-esophageal junction, where stratified squamous epithelium gives way to simple columnar epithelium. The simple columnar epithelium (surface mucous cells) dips into the lamina propria to form gastric pits (150-300 um deep). Gastric glands (simple tubular branched) empty into the bottom of the gastric pits. The base of gastric glands rests on a muscularis mucosa. The submucosa is quite prominent and contains numerous arteries, veins, lymphatics and nerves. In the stomach the muscularis externa consists of three layers: a discontinuous inner oblique layer, then an inner circular layer and an outer longitudinal layer. When the stomach is empty the surface is thrown into folds (rugae).

The stomach is divided into three histological regions (cardiac, body/fundus, pyloric) based on their anatomical location and appearance of the glands. The cardiac region of the stomach is a narrow rim of tissue around the esophageal opening. The cardiac glands are short tubular glands that are
coiled at the base. The glands consist mostly of mucus secreting cells. Parietal cells may be found in these glands. The fundus and body make up more than 90% of the stomach and have the same histological appearance. The glands of the body and fundus are straight tubular and have three regions: The upper third is the isthmus and empties into the gastric pits, the middle third is the neck and the bottom third is the base. There are five types of cells associated with the glands. Regenerative cells are found at the boundary between the isthmus and the gastric pit. These cells are few in number and not readily distinguished in routine preparations. These cells divide and migrate upwards to replenish the surface mucous cells and downward to replenish the rest of the cells in the gastric glands. Mucous neck cells are found in the isthmus and neck region. These cells are scattered among parietal cells and secrete an acidic form of mucus. Parietal cells are distinctive eosinophillic cells with a centrally located nucleus and secrete hydrochloric acid. The eosinophilia is due to the large quantity of mitochondria in these cells. Some parietal cells are also be found in the base of the gland. The primary cell type in the base is the chief cell which has a basophilic cytoplasm in its basal region. Chief cells secrete pepsinogen and gastric lipase. Gastric enteroendocrine cells are part of the diffuse neuroendocrine system (DNES) are few in number and secrete enteric hormones (these can not be identified with H\&E). The pyloric region has short coiled tubular glands that only secrete mucus - chief cells and parietal cells are absent.

Small Intestine

One of the main functions of the small intestine is nutrient absorption. Specializations for increasing surface area for absorption involve three magnitudes of folds or projections.

1. Circular transverse folds (plicae circulares or valves of Kerckring) of the entire mucosa (with a core of submucosa) project permanently into the lumen. The plicae are prominent in the duodenum and jejunum and diminish in the later part of the ileum.
2. Villi are projections (evaginations) of the mucous membrane (with a core of lamina propria) into the lumen. The shape of villi varies in the different regions of the small intestine: They start as tall, narrow, fin-ger-like projections in the duodenum and evolve to a short broad leaf-like projection in the distal ileum.
3. Microvilli are cytoplasmic projections (1-2
um in length) on the surface of the simple columnar epithelial cells. These surface projections make up the striate border of intestinal epithelium.

The second main function of the small intestine is digestion and is dependent on secretions from three types of glands:

1. Exocrine glands (liver and pancreas) deliver their secretions (bile and digestive enzymes) into the duodenum by way of the cystic duct and main pancreatic ducts.
2. Submucosal glands. Submucosal glands are only found in the duodenum (Brunner's glands). They secrete mucus and resemble the pyloric glands of the stomach.
3. Intestinal crypts (glands) are invaginations of the surface epithelium down into the underlying lamina propria.

Cell types found in the intestinal epithelium include:

1. Simple columnar epithelium absorptive cells have a microvillus (striate) border and are involved in nutrient digestion and absorption.
2. Goblet cells secrete mucin.
3. Columnar crypt cells transport secretory $\lg A$
4. Paneth cells at the base of intestinal crypts produce antibacterial substances. These cells have very eosinophillic secretion granules due to their content of lysozyme.
5. M cells occur in regions where lymphoid nodules abut intestinal epithelium. Here the columnar cells are replaced by the cuboidal to squamous M cells. M cells belong to the mononuclear phagocytic system of macrophages and antigen presenting cells.
6. Stem cells are located in the base of the intestinal crypts
7. Enteroendocrine cells (DNES) produce hormones and are not readily distinguished in routine preparations.

The lamina propria forms the core of the villi and supports the intestinal glands, is highly vascular and rich in lymphocytes and plasma cells. The muscularis mucosa lies at the base of the glands and sends fibers into the core of the villi. The sub-
mucosa is irregular fibroelastic tissue with a rich lymphatic and vascular supply. Meissner's submucosal nerve plexus is found in this layer and controls the muscularis mucosa. In the duodenum submucosal glands are found. The muscularis externa, is responsible for peristalsis, and has an inner circular and outer longitudinal layer. Auerbach's plexus of nerves is found between the two muscle layers.

The small intestine is divided into three regions: duodenum, jejunum and ileum. The pyloric stomach transitions to the duodenum at the pyloric sphincter (thick inner circular layer of the muscularis externa). The duodenum is the shortest segment (25 cm) and receives secretions from the liver (bile) and pancreas (digestive enzymes). A distinguishing feature of the duodenum is the presence of submucosal glands (Brunner's glands, their appearance differs from pyloric glands only with respect to where they are located i.e. submucosal vs. mucosal). The jejunum and ileum have a similar appearance. Lymphoid tissue in the lamina propria progressively increases from the jejunum to the ileum. In the ileum, permanent clusters of lymphoid nodules (Peyer's patches) become a prominent feature. Villi become shorter, broader and have increasingly larger lacteals (blind ending lymphoid vessels in the core of villi) in the ileum. Frequency of goblet cells and Paneth cells increases as one progresses from the duodenum to the ileum.

Large Intestine

The main function of the large intestine is to reabsorb water and to consolidate and transport the fecal mass. The parts of the large intestine are the cecum, appendix, colon, rectum and anal canal. The cecum and colon are histologically indistinguishable. Having no villi, the inner surface is smooth and even. The intestinal glands (crypts of Lieberkuhn) are frequent and closely packed together. The glands are simple straight tubular glands and quite long (>600 um). The two major cell types are simple columnar absorptive cells with striated border and numerous goblet cells. Paneth cells may or may not be present. Enteroendocrine cells may be seen at the base of the crypts. Lymphocytes are common in the lamina propria. The muscularis mucosa is found at the base of the glands. The submucosa is well developed with prominent blood and lymph vessels. Meissner's submucosal nerve plexus is easily seen in the colon. The muscularis externa consists of an inner circular layer and an unusual outer longitudinal layer. The outer layer is gathered into three distinct bundles (taenia coli) that are equally spaced around the gut. Between the muscle layers the numerous ganglia of Auerbach's plexus are
seen. The colon is mostly covered by a serosa. The appendix is a $4-6 \mathrm{~cm}$ blind ending diverticulum descending from the cecum. Its epithelium is similar to the colon, but with fewer goblet cells. The crypts are short (150-250 um) in comparison to the colon. Enteroendocrine cells are found in the base of the crypts. Numerous lymphocytes and nodules are present in the lamina propria. When nodules are present M cells are frequently observed in the epithelium overlying the nodules. The muscularis mucosa is very thin. The muscularis externa is inner circular and outer longitudinal layers of smooth muscle. The appendix is covered by a serosa.

Observe and note:

Tongue

1. Striated muscle
2. Lingual (minor) salivary glands
3. Foliate and filiform papillae.
4. Taste buds
5. Taste pore

Esophagus

1. The mucosa consisting of:
a. Epithelium: stratified squamous nonkeratinizing
b. Lamina propria (the connective tissue support for epithelium in mucous
membranes).
c. Muscularis mucosa
2. Submucosa consisting of:
a. Submucosal glands with ducts passing through the mucosa
3. Muscularis externa: inner and outer layers
4. Ganglia of Auerbach's (myenteric) nerve plexus, located between the inner and outer muscle layers of the muscularis externa.

CARDIOESOPHAGEAL JUNCTION

1. Abrupt transition from stratified squamous non-keratinizing epithelium to a simple columnar epithelium.
2. Mucosa
a. Lamina propria
ii. Pyloric mucosal glands
b. Muscularis mucosa
b. Submucosa
3. Gastric pits
4. Cardiac glands
a. Mucous cells
b. Parietal cells
5. Submucosa
6. Muscularis externa
7. Adventitia

Fundic stomach

1. Rugae
2. Muscularis mucosa
3. Muscularis externa
4. Gastric pits and glands
5. Four (five) types of cells characteristic of the stomach:
a. Simple columnar epithelium of the surface
b. Mucous neck cells
c. Parietal cells
d. Chief cells
e. Enteroendocrine cells cannot be easily recognized with H\&E

Pyloric stomach

1. Pits and glands
2. Short coiled mucosal glands
a. Glands consists primarily of cells that secrete mucus
i. Absence of parietal cells

Pyloroduodenal junction

1. Sphincter
2. Pyloric stomach
a. Mucosa
i. Gastric pits
3. Duodenum
a. Mucosa
i. Villi
ii. Crypts (glands)
b. Submucosa
i. Submucosal glands (Brunner's glands)

Duodenum

1. Mucosa
a. Villi
b. Crypts (glands)
c. Surface absorptive cells
i. Brush border - microvilli
d. Goblet cells
e. Lamina propria
f. Muscularis mucosa
2. Submucosa
a. Submucosal glands (Brunner's glands)
3. Muscularis externa
a. Inner circular and outer longitudinal

Jejunum/leeum

1. Mucosa
a. Villi
i. Compare villi in duodenum, jejunum and ileum
ii. lacteals
b. Crypts (glands)
c. Surface absorptive cells
i. Brush border - microvilli
ii. Terminal web and terminal bar
d. Goblet cells
e. Paneth cells
f. Lamina propria
i. Lymphocytes and plasma cells
ii. Lymph nodules (Peyer's patches)
g. Muscularis mucosa
h. Plicae circulares
2. Submucosa
a. Absence of glands in submucosa
b. Connective tissue, blood and lymph vessels and nerves
3. Muscularis externa
a. Inner circular and outer longitudinal
b. Auerbach's myenteric nerve plexus

Appendix

1. Mucosa
a. Absence of villi
b. Short crypts
c. Surface absorptive cells
d. Few goblet cells
e. Lamina propria
i. Lymphocytes, plasma cells, eosinophils
ii. Lymph nodules (in some areas M -cells over lie nodule)
f. Submucosa
g. Muscularis externa

Colon

1. Mucosa
a. Absence of villi
b. Deep crypts (straight intestinal glands)
c. Surface absorptive cells (microvillus border, terminal web)
d. Numerous goblet cells
e. Lamina propria
i. Lymphocytes, plasma cells, eosinophils
f. Muscularis mucosa
2. Submucosa
a. Numerous blood and lymph vessels
b. Meissner's submucosal nerve plexus
3. Muscularis externa
a. Inner circular layer, outer longitudinal layer (taenia coli)
b. Auerbach's myenteric plexus

Slide \# 108 Tongue (H\&E)

Chapter 14 Gastrointestinal tract

Organization of Stomach

Slide \# 111 Stomach,
(Cardiac stomach glands)

Slide \# 112 Fundic Stomach (H\&E)

Slide \# 113 Stomach Fundic

Slide \# 115 Pyloric Stomach (H\&E)

Intestine Structure and Function

Slide \# 118 Duodenum, Jejunum and Illeum (H\&E)

Illeum

Jejunum

Duodenum

Slide \# 123 Colon (H\&E)

mucosa

Inner circular

Outer longitudinal (taenia coli)

INDEX

A

A-band, 43-44, 48
absorptive cells, 224-225, 227-228
acidophils, 205, 207, 209, 211
acinar pancreas, 195
acini, 194, 196-197, 207
actin, 15, 43, iii
adenohypophysis, 205
adipocytes, 29-30, 35, 194, 207
adrenal cortex, 128, 206-207, 216-218
adrenal gland, 128, 206-207, 215-219
adrenal medulla, 206, 216, 219
adventitia, 127-130, 133-136, 142, 144-145, 223,
227, 233, 247, 265, 306, 331
afferent lymphatic, 158-159, 163-164
agranulocytes, 107
aldehyde fuchsin, 1, 198, 207, 221-222
alpha-cells, 206, 221
alveolar cells, 290, 292, 302-303, 307
alveolar duct, 290, 292, 301
alveolar macrophage, 290, 292
alveolar pore, 290
alveolar sac, 290, 292
alveolus, 16, 193, 289-290, 292, 301, 309, 344
ameloblasts, 84
ampulla, 305, 307, 322-323, 329, 331, 338, 346
anterior chamber, 343-345
anterior pituitary gland, 207, 209-211
antigen presenting cells, 157, 181, 224
aorta, 127, 130, 143-145
aortic valve, 127, 151-152
appendix, 223, 225, 228, 243
appositional growth, 61-62
arcuate arteries, 262, 308, 318
arcuate artery, 262, 264, 270, 278, 306, 308, 318
area cribrosa, 261
areolar tissue, 29-30, 35-36
arrector pili, 182-183, 186
arrector pili muscle, 182, 186
arteriole, 127-130, 138, 158-160, 174-177, 179,
247-248, 253, 261-264
artery, 127-129, 133-134, 136-144, 150, 158, 248,
261, 264, 270, 278, 306, 341
articular cartilage, 77, 79-80
atrioventricular node, 127
atrioventricular septum, 127
atrium, 43, 127, 130, 147-148
Auerbach's plexus, 86-87, 96-98, 223, 225, 228, 232, 245
autonomic nervous system, 85-86, 206
axon, 85-86, 90, 100-101, 182
axon hillock, 85-86, 90
azan, 1, 30, 33, 35,
azure granules, 107, 113-114

B

band forms, 114, 119
basement membrane, $6,15-16,18,20,23,25$, 127-129, 159, 181-182, 193, 205, 261, 263, 289, 295, 299, 307, 329-330, 343
basilar membrane, 346
basophilia, 1, 5, 157, iv
basophilic erythroblast, 113-114
basophilic metamyelocytes, 122
basophilic myelocyte, 114
basophilic myelocytes, 122
basophilic normoblasts, 116-117
basophils, 107-108, 111-112, 114, 205, 207, 209,
211
beta-cells, 206-207, 221
bile canaliculi, 247-248, 254-255
bile ducts, 247
bile ductule, 247-248, 253
bladder, 16, 247, 258-259, 261-262, 265, 285-287,
blood, 1, 4-5, 15-16, 29, 43, 61-63, 107-109,
112-114, 127-128,
B-lymphocytes, 157-159
bone, 29, 61-63, 69-70, 72-82,
bony labyrinth, 346
Bowman's capsule, 16, 261, 263-264, 268, 276
Bowman's membrane, 343-344
Bowman's serous glands, 289
Bowman's space, 261, 264
brachiocephalic vein, 142-143
bronchi, 16, 289-292, 303
bronchiole, 289-292, 300
Bruch's membrane, 343-345
brush border, 15, 227, 261

C

calcified cartilage, 81
calyx, 281-282
canal of Schlemm, 343-344, 350
canaliculi (bone), 62-63, 74
cancellous bone, 63, 69-70, 77
capillaries, $15,128,130,132,159,181,194$,
205-207, 248, 261, 263-264, 307, 330-331, 343
capsule cells, 85-86, 91, 95, 159-160, 276
cardiac muscle, 43-44, 49, 51-53, 55-56, 58-59, 127
cardiac skeleton, 43-44, 55, 61, 127, 130, 151-152, 155
cardioesophageal junction, 226
cardiovascular system, 127,
carotid artery, 141-142
cartilage, 5, 29, 43, 61-68, 77, 79-81, 127,
289-291, 296, 298, 303,
cartilage histogenesis, 64
cell nest, 61-62, 66
cells of Boettcher, 346
cells of Claudius, 346
cells of Hensen, 346
central arteries, 158
central arteriole, 158-160, 174, 176-177, 179
central canal, 86,89
central lymphoid organs, 157
central nervous system, 85
central vein, 247-248, 251-254
centroacinar cells, 193-194, 196-197
cerebellum, 9
cervical glands, 306, 308, 324
cervix, 306, 308, 324
chief cell, 224
chief cells, 205, 207, 215, 224, 227, 235, 237
chochlear nerve, 346
chondroblast, 61-62, 64-66, 292
chondrocyte, 5, 61-66
chondrogenic layer, 61-62
chorion, 307
choroid, $343-345,348,351$
chromaffin cells, 206-207, 219
chromophils, 205-206
chromophobes, 205-207, 209, 211
cilia, 15-16, 20, 25, 295, iv
ciliary body, 343-344, 348, 350
ciliary glands, 344-345, 354-355
cilliated cells, 323
clear cells, 181, 205, 207, 215
cochlea, 346, 356
cochlear duct, 346, 356-357
collagen, 1, 5-7, 29-30, 33, 43, 61-62, 86 ,
collecting ducts, 261, 263-265, 282
collecting tubules, 261, 264, 269-271, 273, 279
collecting veins, 128,178
compact bone, 62-63, 69-70
conjunctiva, 344-345, 353-355
connective tissue, 15, 29-30, 33, 35-38, 43,
convoluted tubules, 261, 263-264, 267-268, 274, 278-279
cornea, 343-344, 348
corneal-scleral junction, 343
corona radiata, 305,313
coronary artery, 150
corpora amylacea, 330-331
corpora cavernosae, 330-331
corpus albicans, 305,307
corpus cavernosum, 340-341
corpus hemorrhagicum, 305, 307, 315
corpus luteum, 305, 307, 316
corpus spongiosum, 330-331, 340
cortex (adrenal gland), 128, 206-207, 216-218
cortex (kidney), 157, 261-264, 267-268, 270-272,
278
cortex (lymph node), 157-159, 163-164, 166
cortex (ovary), 307
corticotropes, 205
crista ampullaris, 346-347, 358
crypt cells, 224
crypts of Lieberkuhn, 225, 244
cumulus oophorus, $305,307,313$
cuticle, 182
cystic duct, 224

D

decidua basalis, 307
decidua capsularis, 307
decidua parietalis, 307
dendrite, 85-86, 90
dendritic cells, 157-159
dense irregular connective tissue, 29, 36, 38, 127-128, 223, 247, 305-306, 308, 329, 343
dense regular connective tissue, 29, 36-37, 61,
330
dental papilla, 83
dental pulp, 84
dentin, 84
dermal papillae, 86, 181-182, 188
dermis, 29, 38, 86, 181-182, 184, 189-190, 309
Descement's layer, 343
desmosomes, 15, 157, 181
diastole, 127
diffuse lymphocytic infiltrations, 158
distal convoluted tubule, 261, 263-264, 268, 274, 279
distributing arteries, 128
DNA, 1, 14
dorsal horn, 85-86, 89
dorsal root ganglion, 85-86, 88, 91-93
dorsal roots, 85
duct cells, $6,183,193,197,307$
ducts of Bellini, 261, 264
ductus deferens, 329-331
dust cells, 157, 301-302

E

ear, 61, 346, 356-358
efferent ductules, 329
efferent lymph vessels, 158
ejaculatory duct, 330
elastic artery, 127-130, 134, 141, 143-144
elastic cartilage, 61-62, 67-68, 289-291, 296
elastic fibers, 1, 29-30, 61, 86, 127-129, 181, 290-291, 306
elastic lamina, 127-130, 133-134, 145
elastic tissue, 29-30, 62, 127-129, 306, 343
elastin, 33-34
endocardium, 127, 130, 148-149
endochondral bone growth, 63
endocrine glands, $15,128,205$, i
endometrium, 306, 308, 317, 320
endomysium, 43-44, 47, 50-51
endoneurium, 85-87, 93, 100
endosteum, 62-63
endothelial cell, $5,15,127-130,158-160,247-248$,
263-264, 290, 331
enteroendocrine cells, 224-225, 227
eosin, 1, 30
eosinophilia, 1, 5, 193, 224, 261, 263, iv eosinophilic metamyelocytes, 122
eosinophilic myelocytes, 122
eosinophils, 29-30, 41, 107-108, 111-112, 114, 122, 228
epicardium, 127, 130, 148-149
epidermis, $15,181-182,184,189-190$
epididymis, 329, 331, 336
epiglottic cartilage, 289
epiglottis, 61, 67-68, 289, 291, 294-296
epimysium, 43-44
epineurium, 86-87, 99
epiphyseal plate, 63, 77, 79
epithelial reticular cells, 157, 160, 169-171
epithelium, 15-16, 18-20, 22-27, 83, erythropoesis, 113
esophagus, 16, 26, 96-97, 223, 226, 230-232
euchromatin, 1, 6 , iv
exocrine glands, $15,193,224,290$, i
exocrine pancreas, 193, 196
external elastic lamina, 128-130, 133-134
external root sheath, 182, 188
extracellular matrix, 29, 343, v
extraglomerular mesangium, 263, 272
extralobular ducts, 193-194, 197, 199
eye, 343-344, 348-353, iii
eyelid, 344-345, 354-355
eyelids, 344

F

Fallopian tube, 305, 322-323
false vocal cords, 289
fascicle, 43, 48, 86
fat cells, 4, 7, 29-30, 38, 158, 206, 247
female reproductive system, 305, i
fetal liver, 247-248, 258
fetal lung, 292, 304
Feulgen, 1, 14
Feulgen stain, 14
fibria, 322
fibroblast, 5-7, 29-32, 43, 61, 85-87, 129, 182,
247, 263, 290, 305, 329-330, 343
fibrocartilage, 55, 61, 68
fibroelastic lamina propria, 289
fibrogenic layer, 61-62
fimbriae, 305
follicles, 182, 184, 186-188, 205, 207, 213, 305,
307, 311-314, 344-345
follicular cells, 205-207, 214, 305, 307
follicular phase, 305

G

gall bladder, 247, 258-259, i
gastric glands, 223-224, 227, 234, 238
gastric pits, 223-224, 227, 234
gastrointestinal tract, 86, 223, i
germinal center, 158, 160, 165
germinal epithelium, 305, 329-330
gland cells, 5, 183, 193, 202-204, 207, 214-215, 344
glands of Littre, 331, 341
glans penis, 330
glassy membrane, 182, 188
glia, 85
glomerulus, 261, 263-264
glucagon, 206
glycogen, 1, 43, 127, 247-248, 255-256, 306
goblet cell, 15-16, 20, 24-25, 224-225, 227-228,
241, 244, 289-291, 295, 344
Golgi apparatus, 1, 11, 205
Golgi stain, 1, 10-11
gonadotropes, 205
Graafian follicle, 305, 312-313
granulocytes, 107
granulomere, 107
granulopoesis, 113
granulosa, 305, 307, 312-313, 316
granulosa cells, 305, 307, 316
granulosa luteal cells, 307, 316
grey matter, 85
ground substance, 29, 61-62

H

hair bulb, 182, 188
hair follicles, 182, 184, 186-188
Hassel's corpuscles, 157-158, 160
Haversian, 62-63, 70-74
Haversian canal, 63, 70-74
Haversian lamellae, 62-63, 70-71, 74
H-band, 43-44, 48
heart, 43, 127-130, 154
heart conduction system, 127
helicine artery, 341
helicotrema, 346, 356
hematopoesis, 113, 247, 258, i
hematoxylin, 1, 12-13, 61
Henle's loop, 261, 263, 269, 271, 273, 279, 281
hepatic arteriole, 247-248, 253
hepatic ducts, 247
hepatic sinusoids, 247, 254-255
hepatic stellate cells, 247
hepatocytes, 247-248, 252, v
Herring bodies, 205, 207, 210, 212
heterochromatin, 1, 6, 43
high endothelial venules, 158-159, 166
high resistance channels, 128
horny cells, 181
hyaline cartilage, 61-62, 65-66, 289-291, 303
hyalomere, 107
hypodermis, 86, 181-182, 184, 189
I
I-band, 43-44, 48
ileum, 223-225, 227, 241
immature bone, 63
infundibulum, 305, 307, 322-323
inlet vessels, 247
inner circumferential lamellae, 62, 73
inner enamel epithelium, 83
inner root sheath, 182
insulin, 1, 206-207
interalveolar septum, 290
intercalated disks, 43-44, 52-53
intercalated ducts, 193-194, 200
interlobar vessels, 261, 264
interlobular arteries, 262
interlobular ducts, 193-194, 196-197
internal elastic lamina, 128-129, 133-134
Interstitial cells of Leydig, 329, 331, 333
interstitial growth, 61-62
interstitial lamellae, 62-63, 70, 74
interterritorial matrix, 61-62
intervetebral disk, 68
intestinal crypts, 224-225, 228
intestinal glands, 224-225, 228
intralobular duct, 193, 197
intralobular ducts, 193-194, 196, 200, 309
intramembranous bone formation, 75-76, 82
intramembranous bone growth, 63
iris, 343-344, 348-349
islets of Langerhans, 193-195, 198, 206-207,
220-222
isthmus, 224, 305-306

J
jejunum, 223-225, 227, 239-240
junctional complex, 15, 43, 193
juxtamedulary cortex, 164
juxtamedullary renal corpuscles, 262, 264

K

keratin, 15-16, 26-27, 181
keratinocytes, 181
keratinosome, 181
keratohyalin granules, 181
kidney, 15-16, 107, 113, 157, 205, 261-264, 267-282
Kupffer cells, 157, 247-248, 257

L

lacrimal gland, 344, 353
lacteals, 225, 227
lactiferous duct, 306, 326
lactiferous sinus, 307
lactotrope, 205-206
lacunae, 61-63, 70-74, 307
lamellae, 62-63, 70-71, 73-74
lamina propria, 29, 158, 223-228, 231, 247, 262,
265, 289, 291-292, 306, 308-309, 329, 331, 344
Langerhans cells, 157, 181, 207

Large intestine, 223, 225
larynx, 25, 289, 291, 297
lens, 343-345, 348-349, iii
Leydig cells, 329, 331, 333
limbus, 343-344, 346, 348
lipofuscin pigment, 43-44, 52, 86, 206, 218
Littre, 330-331, 341
liver, $8,15,128,157,224-225,247-248,250-258$,
i, v
liver hematopoesis, 247, 258
liver lobules, 247-248, 250-251, 253
lobules, 157, 193-194, 247-248, 250-251, 253, 307, 309, 330
loose connective tissue, 29, 127, 129, 158, 307, 329, 331, 343
lung, 15-16, 127, 157, 290-292, 299-304
luteal phase, 305
lymph node, 4, 9, 40-41, 158-159, 162-167
lymph node cortex, 163, 166
lymph node medulla, 163
lymph nodes, 29, 157-158
lymph nodules, 158-159, 228, 289, 291
lymphatic vessel, 139, 158-159, 162, 223, 247-248
lymphocyte nuclei, 4
lymphocytes, 107-108, 110, 112, 124, 157-160,
223-225, 228, 306-307
lymphoid system, 157, i

M

M cells, 224-225
macrophage, 29-32, 41-42, 157-160, 162-163, 224, 247-248, 263, 290, 292, 301, 305-306, 329, 331
macrophages, 157, 159, 224, 247-248
macula, 261, 263-264, 275, 279-280, 344, 346
macula densa, 261, 263-264, 275, 279-280
major calyces, 262
male reproductive system, 329, i
mammary gland, 305-306, 309, 325-327
mammotropes, 205
marginal zone, 159-160, 177
mast cells, 1, 29-30, 39-40, 329, 331
mature (Graafian) follicle, 305
mediastinum testis, 329, 335
medium and large veins, 128
medulla, 157-160, 163-164, 182, 206-207, 216, 219, 261-264, 267, 270-271, 278, 305
medulla (adrenal gland), 206-207, 216, 219
medulla (kidney), 157, 261-264, 267, 270-271, 278
medulla (lymph node), 157-159, 163-164, 305
medulla (ovary), 305
medullary cords, 158-159
medullary ray, 261, 263-264, 270, 272-273, 278, 282
medullary region, 157, 261
megakaryocytes, 114, 123

Meibomian glands, 344-345, 354-355
Meissner's corpuscles, 86, 182
Meissner's plexus, 86-87, 97-98, 223
melanin, 181, 189
melanocytes, 181, 183, 188
membranous labyrinth, 346
menstrual phase, 306
Merkle cells, 181
mesangial cells, 157, 263-264, 276
mesangium, 263, 272, 276-277
mesenchymal cells, 30-32, 63
mesentery nerves, 102-103
metamyelocytes, 119-120, 122
microvilli, 15-16, 20, 24, 224, 227, 241, 289, 307, 329, iv
minor calyces, 262
mitochondria, 1, 12-13, 63, 193, 205, 224, iv
modiolus, 346,356
monocytes, 63, 107-108, 110, 112, 125, 157
mucoid connective tissue, 29
mucosa, 158, 223-228, 230-231, 233, 235, 238,
243, 247, 262, 289, 305-308, 330
mucous, 5, 15-16, 193-194, 202-204, 223-224,
226-227, 236, 289, 303, 306, 331, 344
mucous cells, 5, 15, 193-194, 202-204, 223-224,
227, 236
mucous glands, 193, 223-224, 227, 303, 306, 331
mucous neck cells, 224, 227, 236
multilaminar primary follicles, 307, 311, 314
muscle, $7,15,33,37,43-44,47-53,55-59,86$,
muscle fascicle, 43, 48
muscle insertion, 44, 50-51
muscular artery, 129, 133-134, 136-140
muscularis externa, 223, 225-228, 230-233, 235, 243
muscularis mucosa, 223-228, 230-231, 233, 235, 238, 243, 247, 305-306
myelin, 85-87, 100-101
myeloblast, 113-114, 119-120
myelocytes, 119-120, 122
myenteric plexus, 223, 226, 228, 232
myocardium, 127, 130, 149
myoepithelial cells, 193, 307, 343-344
myofibrils, 43-44, 50, 127
myometrium, 306-308, 317, 320
myoneural junctions, 43
myosin, 43, iii
myo-tendinous insertion, 43-44

N

nasal cavity, 289, 291
nasopharynx, 289
nephron, 261, 263
nerve, 43, 85-87, 99-101, 128, 182,
nerve fascicles, 87, 99
neurohypophysis, 205
neuron, 85-86, 289
neutrophil, 113-114
neutrophilic band, 113-114, 120-121
neutrophilic band cells, 121
neutrophilic metamyelocyte, 113-114, 120
neutrophilic myelocyte, 113-114, 120
neutrophils, 29, 107-108, 112-114, 159
Nissl bodies, 86, 95
Nissl substance, 4, 85-86, 90
node of Ranvier, 86-87, 100-101
nodule, 158-159, 164, 172, 174, 177, 179, 228
non-striated muscle, 43
nucleolus, 4, 9-10, 85, 329
nucleus, 4, 9-10, 29, 43-44, 85-86,

0

odontoblasts, 84
olfactory region, 289
oocytes, 305, 307
optic disk, 344-345, 352
optic nerve, 343-345, 352
ora serrata, 343,345
oral epithelium, 83
organ of Corti, 346, 357
orthochromatic erythroblast, 113-114
orthochromatic normoblasts, 116-117
osseous spiral lamina, 346
ossified cartilage, 80
osteoblasts, 61-63, 76, 78, 81-82
osteoclasts, 63, 78-79, 81
osteocyte, 62-63, 70-74, 76, 82
osteocyte lacunae, 63, 70-74
osteoid, 62-63, 76, 82
osteon, 62-63
otoliths, 346
outer circumferential lamellae, 62-63, 73
outer enamel epithelium, 83
ovarian cycle, 305-306
ovary, 16, 305, 307, 311-316
oviducts, 305-306
ovulation, 305
oxyphils, 205-207, 215

P

Pacinian corpuscle, 86-87, 104-105, 182, 192
palate, 291, 293-294
palatine tonsil, 172
palpebra, 344, 353-354
pancreas, 10, 16, 39, 128, 193-198, 206, 220-222,
224-225
pancreatic ducts, 16, 224
Paneth cells, 224-225, 227-228, 242
papillary layer, 181
paracortex, 158-159
parafollicular cell, 205, 207, 214
parasympathetic ganglion, 86-87, 96-98, 232
parasympathetic nerves, 86,223
parathyroid gland, 205-207, 214-215
paratrabecular sinuses, 158
parietal cells, 224, 227, 235, 237
parotid gland, 193-194, 199-201
pars basalis, 308, 317, 321
pars distalis, 205
pars functionalis, 306, 308, 317
pars intermedia, 205
pars tuberalis, 205
PAS, 1, 43, 54-55, 127, 193, 247-248, 255-256
pasasympathetic ganglion, 97
pectinate muscle, 147
penicillar arteries, 159
penis, 329-331, 340-341
periarteriolar lymphocytic sheath, 158, 174, 179
peribiliary capillary, 253
perichondrium, 61-62, 64-66
pericyte, 128
perimysium, 43-44
perineurium, 86-87, 99
periodic acid Schiff, 1, 247
periosteum, 37, 51, 62-63, 79, 82
peripheral lymphoid tissues, 158
peripheral nerve, $85,87,99-101$
peripheral nervous system, 85
Peyer's patches, 158, 225, 228, 242
pituicytes, 205, 207
pituitary gland, 205, 207-212
placenta, 305, 307, 309, 328
plasma cells, 29-30, 40, 114, 124, 157-159,
223-224, 228, 307
platelets, 107-108, 114
plicae circulares, 224, 228
pneumocytes, 290, 292, 302
podocytes, 261, 263-264, 276-277
polychormatic normoblasts, 116
polychromatic erythroblast, 113-114
portal canal, 247-248, 252-253
portal venule, 247-248, 253
post capillary venules, 128-129
posterior chamber, 343, 345
posterior pituitary gland, 205, 210, 212
PP-cells, 206
predentin, 84
primary nodule, 158-159, 164
primary nodules, 158-159
primary oocytes, 305, 307
primordial follicles, 305, 307, 311
proerythroblast, 113-114
proliferative phase, 306
promyelocyte, 113, 119-120
promyelocytes, 119-120
pronormoblasts, 116
prostate, 330-331, 339-340
proximal convoluted tubule, 261, 263-264,
267-268, 274, 278-279
pseudostratified columnar epithelium, 15-16, 20,
25, 289, 295, 297, 299, 303, 329-331, 344
pseudounipolar, 85
PTA stain, 49, 53, 56
pulp arteriole, 159, 174-177
pupil, 343-344, 348
Purkinje fibers, 44, 54, 56, 127, 130, 152-154

R

radial arteries, 306, 308, 318
Rathke's cysts, 205, 207-208
RBC, 4, 7, 113, iii
reaction center, 174
red blood cells, 1, 5, 107-108, 158-159, 264
red pulp, 158-160, 173, 175-177
regenerative cells, 224
Reissner's vestibular membrane, 346
renal arteries, 262
renal columns, 261-262
renal corpuscle, 261-264, 267-268, 274-277, 279
respiratory bronchioles, 289-291, 300
respiratory epithelium, 16, 289, 291, 299
respiratory system, 15, 289, i
resting zone, $63,78,80$
rete testis, $329,331,335$
reticular fibers, 1, 29-30, 34, 43, 86, 128-130, 132,
158-159, 167, 181, 247, 290, 329
reticular layer, 181-182
reticular tissue, 29-30, 329
reticulocyte, 113, 116
retina, 343-345, 348, 351-352
retina layers, 345, 352
RNA, 1, 4, 8-10, 85, iv
root sheath, 182, 188
rugae, 223, 227, 235, 247

S
saccule, 346-347
satellite cells, 85
scala media, 346
scala tympani, 346, 356-357
scala vestibuli, 346, 356-357
scalp, 182, 184-188
Schwann cell, 85-87, 100-101
sclera, 343-344, 348, 351
sebaceous gland, 182-183, 185-186, 344-345
secondary follicles, 305,307 , 312-313
secondary nodule, 158-159, 164
secretion granules, 193, 205, 224, iv
secretory phase, 306
semicircular canals, 346-347, 356
seminal vesicle, 329-331, 338-339
seminiferous germinal epithelium, 329
seminiferous tubules, 329-330, 332, 334
sero-mucous glands, 289, 291
serosa, 223, 225, 247, 305-306
serous cells, 193-194, 202-204, 289-290, 344
serous demilune, 203
serous glands, 193, 289
serous secretory cells, 193
Sertoli cells, 329-330, 333-335
sheathed arteriole, 159-160, 175
sheathed capillary, 177
silver stain, 128, 158, 167
simple columnar epithelium, 19, 24, 223-224, 226-227, 241, 247, 289, 306-308, 330, 346
simple cuboidal epithelium, 18-19, 23, 182, 193, 197, 205, 247, 261, 263, 289, 305, 307, 311
simple squamous epithelium, $16,18,23,261$, 263, 289, 343
sino-atrial node, 43, 127
sinuses, 158-159, 306, 331
sinusoids, 128, 159-160, 175, 177-179, 206-207, 217, 247-248, 254-255
skeletal muscle, 43-44, 47-51, 53, 58-59, 223, 289, 291, 306
skin, 15-16, 26-27, 29, 86, 103-105, 157, 181-182, 189-192,
small collecting veins, 128
small intestine, 223-225
smooth muscle, 7, 43-44, 49, 56-59, 127-129, 182, 223, 225, 247, 262-263, 289-292, 306-307, 309, 329-331, 343-344
soma, 85
somatostatin, 206
somatotropes, 205
space of Disse, 247-248
specific granules, 107, 113-114
spermatids, 329-330, 334
spermatocytes, 329-330, 334
spermatogonia, 329-330, 333-334
spermiogenisis, 334
spinal cord, 4, 85-86, 88-91
spiral ganglion, 346, 356-357
spleen, 128, 157-158, 160, 173-178
splenic artery, 158
splenic cords, 159-160
splenic sinusoids, 159, 175
spongy bone, 62, 69
stellate reticulum, 83
stereocillia, 329, 331, 346
stomach, 16, 193, 223-225, 227, 233-238
straight tubules, 261, 264
stratified cuboidal, 16, 193, 307, 309
stratified squamous epithelium, 25-27, 159,
181-182, 223, 226, 289, 291, 295, 297, 306, 308,
343-344
stratified squamous keratinized epithelium, 181-182, 344
stratum basalis, 181-182, 189-190
stratum corneum, 181, 189-190
stratum germinativum, 181, 190
stratum granulosum, 181, 189-190
stratum intermedium, 84
stratum lucidum, 181
stratum spinosum, 181, 189-190
striate border, 224
striate ducts, 193, 200
striated muscle, 43, 226
subcapsular sinus, 158-159, 165
sublingual gland, 193-194, 203-204
submandibular gland, 193-194, 201-203
submucosa, 223-228, 230, 233, 247
submucosal glands, 223-227, 238, 240, 330
surface mucous cells, 223-224, 227
sweat glands, 182, 184-185, 187, 190, 193, 345
sympathetic ganglion, $86,88,91,95$
syncytiotrophoblasts, 307,328
systole, 127

T

taenia coli, 225, 228, 243
tarsal glands, 345, 354-355
tarsal plate, 344-345, 355
tectorial membrane, 346, 357
tendon, 37, 50-51
teritorial matrix, 66
terminal bar, 15-16, 20, 227
terminal bronchioles, 289-291, 300
terminal pulp capillaries, 159
terminal web, 15-16, 20, 227-228, 241
territorial matrix, 61-63
testis, 128, 329-335
theca externa, 305, 307, 313
theca interna, 305, 307, 313
theca luteal cells, 305, 316
thick skin, 27, 86, 103-105, 181-182, 190-192
thin skin, 26, 86, 181-182, 189, 289
thymus, 157, 160, 168-171
thyroid follicles, 207, 213
thyroid gland, 205-207, 213-214
thyrotropes, 205
T-lymphocytes, 157-159
toluidine blue, 1, 8-10
tonofilaments, 181
tonsil crypt, 172
tonsils, 158, 289
tooth development (bell stage), 83-84
trabeculae, 62, 157-160, 330-331
trabecular sinus, 159, 165
trabecular veins, 159-160, 178
trabecular vessels, 158-159, 176, 178
trachea, 25, 65-66, 289-291, 298-299
tracheal cartilage, 289, 298
trachealis muscle, 289, 291, 298
transitional epithelium, 15-16, 22-23, 262, 265,
283-287
tricuspid valve, 150
tubuli recti, 329, 331, 335
tunica adventitia, 127-130, 133-136, 142, 144-145
tunica albuginea, 305, 329-331, 340
tunica intima, 127-130, 133, 135, 144-145
tunica media, 127-130, 133, 135, 142, 144-145
type I pneumocytes, 290, 292, 302
type II pneumocytes, 290, 292, 302
U
umbrella cells, $16,22-23,262,265,285-287$
unilaminar primary follicles, 307, 311, 314
ureter, 16, 261-262, 265, 283-284
urethra, 261, 329-331, 340-341
urinary bladder, 16, 265, 285-287
urinary pelvis, 261
urinary pole, 261, 263-264, 268, 275-277, 280
urinary system, 261, i
uriniferous tubule, 261
uterine glands, 306, 308, 317-318
uterine tube, 305, 322-323
uterus, 16, 43, 305-308, 317-321
uterus (late secretory), 308, 319
uterus (menopausal), 321
uterus (menstrual), 308, 320-321
uterus (proliferative), 308, 317-318
uterus (secretory), 308, 319
utricle, 346-347
V
vagina, 16, 305-306, 308, 325
valves of Kerckring, 224
vas deferens, 329, 331, 336-338
vas deferens (ampulla), 331, 338
vasa recta, 262, 264, 270-271, 278
vasa vasorum, 127, 129
vascular pole, 261, 263-264, 275-276, 280
vaso vasorum, 130, 142-143, 145
vein, 128, 135-137, 140-143, 146, 159, 247-248, 251-254
vein valve, 146
vena cava, 130, 145-146
ventral horn, 85-86, 89
ventral motor neurons, 89-90
ventral roots, 85
ventricle, 127, 130, 149, 289, 291
ventricular fold, 289
venule, 130, 138-139, 253
Verhoeff, 1, 30, 35, 67-68, 128, 291, iv
vestibular apparatus, 356, 358
vestibular membrane, 346, 356-357
vestibule, 289, 306, 346
villi, 224-225, 227-228, 307, 309
vitreous body, 343
vitreous chamber, 343
vocal cords, 289
vocal fold, 289, 291
vocal ligament, 291, 297
vocalis muscle, 289, 291, 297
Volkman canal, 73
Volkmann's canals, 62

W

Wasserhelle cells, 205, 207, 215
white blood cells, 4-5, 107-108, 128
white pulp, 158, 160, 173-174, 176

Z-line, 43-44, 48
zona fasciculata, 206, 216, 218
zona glomerulosa, 206, 216-217
zona pellucida, 305, 307, 313
zona reticularis, 206, 216, 218-219
zone of calcification, 78, 80-81
zone of hypertrophy, 63, 78, 80
zone of ossification, 63, 78, 80-81
zone of proliferation, 63, 78, 80

Slides

Slide 1 Lymph Node, 4
Slide 1 Nuclear Morphology \& Cell Size, 3
Slide 1 Spinal Cord, 4, 90
Slide 3 Toluidine Blue, 8-10
Slide 2 Cells and Tissue: Size, Shape, Color, 5-7
Slide 9 Golgi Stain, 10-11
Slide 10 Iron Hematoxylin Stain, 12-13
Slide 12 Feulgen Stain, 14
Slide 16 Gut: Smooth muscle, 57-58
Slide 16 Simple Epithelia, 18-20
Slide 17 Stratified Epithelia, 21
Slide 18 Transitonal Epithelium, 287
Slide 20 Pig Snout, 31-32, 64, 75-76, 83-84
Slide 20 Pig Snout Embryo, 64, 75-76, 83-84
Slide 21 Connective tissue H\&E, 35
Slide 22 Connective tissue Verhoeff, 35
Slide 23 Connective tissue Azan, 35
Slide 23 Tendon: Muscle insertion (Azan), 51
Slide 24 Connective Tissue H\&E, 33
Slide 24 Mesentery, 38, 41, 102, 132-139, 162-163
Slide 24 mesentery Lymph Node, 41, 162-163
Slide 24 Mesentery nerves, 102
Slide 24 Vessel: Smooth muscle, 57
Slide 25 Connective Tissue Verhof, 33
Slide 25 Mesentery (Verhof), 33, 134-135, 137-139
Slide 26 Connective Tissue Azan, 33
Slide 26 Mesentery (Azan), 42, 102-103, 134, 136-137
Slide 26 Mesentery nerves (azan), 102-103
Slide 29 Endochondral Bone Formation, 77-79
Slide 29 Muscle Attachment, 37
Slide 29 Tendon: Muscle insertion, 51
Slide 30 Tendon: Muscle insertion, 50
Slide 31 Liver (Trypan Blue), 256-257
Slide 33 Blood Smear, 109, 112
Slide 34 Bone Marrow Smear, 115
Slide 36 Epiglottis (H\&E), 67-68
Slide 38 Epiglottis, 294-296
Slide 39 Epiglottis (Verhof), 67-68, 296
Slide 40 Intervetebral Disk: Fibrocartilage, 68
Slide 43 Epiphysis - Cancellous and compact
Bone, 69
Slide 43 Skill - Cancellous and compact bone, 69-70

Slide 44 Ground bone, 73-74
Slide 45 Decalcified bone, 72
Slide 46 Endochondral Bone Formation, 79-82
Slide 46 Intramembranous bone formation, 82
Slide 47 Spinal Cord, 88-89, 91
Slide 50 Dorsal Root Ganglion, 91-92
Slide 51 Dorsal Root Ganglion (Azan), 93
Slide 52 Peripheral Nerve, 99-101
Slide 53 Smooth Muscle, 56
Slide 54 Cardiac Muscle, 51-53
Slide 55 Skeletal Muscle, 47-49
Slide 56 Skeletal, Cardiac and Smooth Muscle
(PTA stain), 49, 53
Slide 57 Skeletal Muscle Teased, 50
Slide 58 Cardiac Skeleton, 55, 155
Slide 58 Cardiac Skeleton (PAS), 53, 55, 155
Slide 58 Purkinje Fibers, 54, 153-154
Slide 58 Purkinje fibers (PAS), 54
Slide 59 Sympathetic Ganglion, 95
Slide 61 Popliteal Artery and Vein, 140-141
Slide 62 Popliteal Artery and Vein, 140-141
Slide 63 Brachiocephalic Vein, 142-143
Slide 63 Carotid Artery, 141-142
Slide 65 Aorta, 143-145
Slide 65 Vena Cava, 146
Slide 66 Aorta (Verhof), 144-145
Slide 66 Vena Cava (Verhof), 145-146
Slide 67 Vein Valve, 146
Slide 69 Pectinate Part of Right Atrium, 147
Slide 69 Smooth part of Left Atrium, 148
Slide 70 Left Ventricle, 149
Slide 70 Right Ventricle, 149
Slide 71 Coronary Artery, 150
Slide 71 Tricuspid Valve and Coronary Artery, 150
Slide 72 Coronary Artery (Verhof), 150
Slide 73 Aortic Valve, 151-152
Slide 74 Cardiac Skeleton, 152
Slide 74 Purkinje Fibers, 56, 152-153
Slide 76 Lymph Node, 164-166
Slide 78 Reticular fibers, 34
Slide 79 Thymus, 168-171
Slide 81 Palatine Tonsil, 172
Slide 84 Spleen, 176-178
Slide 85 Spleen, 173-175
Slide 86 Scalp, 184-187
Slide 87 Scalp, 188
Slide 88 Hair Follicle, 186
Slide 88 thin skin, 189
Slide 90 Thin Skin, 26, 189
Slide 91 Thick Skin, 27, 103-105, 190-192
Slide 94 Parotid Gland, 199-201
Slide 95 Submandibular Gland, 201-203
Slide 96 Sublingual Gland, 203-204
Slide 109 Esophagus, 26, 96-97, 230-232
Slide 110 Trachea, 298
Slide 119 Simple columnar epithelium, 23-24
Slide 120 Simple columnar epithelium, 24
Slide 123 Colon, 97-98, 243-245
Slide 125 Liver (6 mos. Fetus), 257-258

Slide 126 Liver, 250-252
Slide 127 Liver (Azan), 253-255
Slide 128 Liver (PAS), 255-256
Slide 130 Gall Bladder, 258-259
Slide 131 Pancreas, 195-197, 220
Slide 132 Pancreas (Azan), 198
Slide 133 Pancreas (Aldehyde Fuchsin), 198, 221-222
Slide 134 Nasal Conchae and Palate, 293
Slide 134 Palate, 293-294
Slide 135 Larynx, 25, 297
Slide 136 Trachea, 25, 65-66, 298-299
Slide 136 Trachea, Hyaline Cartilage, 65-66
Slide 137 Lung (fetal), 304
Slide 139 Lung, 303
Slide 140 Fetal Kidney, 267-269
Slide 141 Kidney, 270-277
Slide 141 Simple epithelium, 23
Slide 142 Kidney, 278-281
Slide 142 Kidney (Azan), 278-281
Slide 143 Kidney, 281-282
Slide 146 Ureter, 283-284
Slide 147 Bladder, 285
Slide 149 Pituitary Gland, 208-210
Slide 150 Pituitary Gland (Azan), 210-212
Slide 151 Thyroid Gland, 213-214
Slide 154 Parathyroid Gland, 214-215
Slide 155 Adrenal Cortex, 218
Slide 155 Adrenal Gland, 215-219
Slide 155 Adrenal Medulla, 216, 219
Slide 160 Ovary, 311-312
Slide 165 Uterus (proliferative), 317-318
Slide 166 Uterus (late secretory), 319
Slide 167 Uterus (menstrual), 320-321
Slide 170 Uterus (menopausal), 321
Slide 171 Fallopian Tube, 322-323
Slide 172 Cervix, 324
Slide 173 Vagina, 325
Slide 174 Mammary Gland, 325-327
Slide 175 Placenta, 328
Slide 178 Testis (adult), 333-335
Slide 178 Testis (neonate), 332-333
Slide 181 Vas Deferens, 336-337
Slide 182 Seminal Vesicle, 338-339
Slide 183 Prostate, 339-340
Slide 184 Penis, 340-341
Slide 185 Epididymis, 336
Slide 207 Cervix, 324
Slide 211 Pancreas, 221
Slide 214 Urinary Bladder, 287
Slide 218 Mammary Gland, 327
Slide 224 Uterine Tube, 323
Slide 226 Eye, 352
Slide 227A Eye, 348-350
Slide 227B Eye, 353
Slide 229 Eye, 351-352
Slide 230 Ear, 356-358
Slide 231 Eyelid, 354-355
Slide 245 Heart Purkinje Fibers, 154

